224 research outputs found

    Ultimate Intelligence Part I: Physical Completeness and Objectivity of Induction

    Full text link
    We propose that Solomonoff induction is complete in the physical sense via several strong physical arguments. We also argue that Solomonoff induction is fully applicable to quantum mechanics. We show how to choose an objective reference machine for universal induction by defining a physical message complexity and physical message probability, and argue that this choice dissolves some well-known objections to universal induction. We also introduce many more variants of physical message complexity based on energy and action, and discuss the ramifications of our proposals.Comment: Under review at AGI-2015 conference. An early draft was submitted to ALT-2014. This paper is now being split into two papers, one philosophical, and one more technical. We intend that all installments of the paper series will be on the arxi

    Dijet resonances, widths and all that

    Get PDF
    The search for heavy resonances in the dijet channel is part of the on-going physics programme, both at the Tevatron and at the LHC. Lower limits have been placed on the masses of dijet resonances predicted in a wide variety of models. However, across experiments, the search strategy assumes that the effect of the new particles is well-approximated by on-shell production and subsequent decay into a pair of jets. We examine the impact of off-shell effects on such searches, particularly for strongly interacting resonances.Comment: Version published in JHE

    Horizontal Symmetry for Quark and Squark Masses in Supersymmetric SU(5)

    Get PDF
    Recent interest in horizontal symmetry model building has been driven mainly by the large top mass and hence strong hierarchy in quark masses, and the possibility of appropriately constrained soft squark mass matrices, in place of an assumed universality condition, for satisfying the relevant FCNC constraints. Here we present the first successful SUSY-SU(5)SU(5) model that has such a feature. The horizontal symmetry is a gauged (Q12×U(1))H(Q_{12} \times U(1))_H ((SU(2)×U(1))H\subset (SU(2) \times U(1))_H). All nonrenormalizable terms compatible with the symmetry are allowed in the mass matrix constructions. Charged lepton masses can also be accommodated.Comment: 15 pages, latex, 1 latex figure included version to be published in Phys. Rev. Lett. ; some small changes in notations and presentation, a small paragragh and 3 references adde

    Decays of metastable vacua in SQCD

    Full text link
    The decay rates of metastable SQCD vacua in ISS-type models, both towards supersymmetric vacua as well as towards other nonsupersymmetric configurations arising in theories with elementary spectators, are estimated numerically in the semiclassical approximation by computing the corresponding multifield bounce configurations. The scaling of the bounce action with respect to the most relevant dimensionless couplings and ratios of scales is analyzed. In the case of the decays towards the susy vacua generated by nonperturbative effects, the results confirm previous analytical estimations of this scaling, obtained by assuming a triangular potential barrier. The decay rates towards susy vacua generated by R-symmetry breaking interactions turn out to be more than sufficiently suppressed for the phenomenologically relevant parameter range, and their behavior in this regime differs from analytic estimations valid for parametrically small scale ratios. It is also shown that in models with spectator fields, even though the decays towards vacua involving nonzero spectator VEVs don't have a strong parametric dependence on the scale ratios, the ISS vacuum can still be made long-lived in the presence of R-symmetry breaking interactions.Comment: 22 pages, 7 figure

    Long Lived Fourth Generation and the Higgs

    Full text link
    A chiral fourth generation is a simple and well motivated extension of the standard model, and has important consequences for Higgs phenomenology. Here we consider a scenario where the fourth generation neutrinos are long lived and have both a Dirac and Majorana mass term. Such neutrinos can be as light as 40 GeV and can be the dominant decay mode of the Higgs boson for Higgs masses below the W-boson threshold. We study the effect of the Majorana mass term on the Higgs branching fractions and reevaluate the Tevatron constraints on the Higgs mass. We discuss the prospects for the LHC to detect the semi-invisible Higgs decays into fourth generation neutrino pairs. Under the assumption that the lightest fourth generation neutrino is stable, it's thermal relic density can be up to 20% of the observed dark matter density in the universe. This is in agreement with current constraints on the spin dependent neutrino-neutron cross section, but can be probed by the next generation of dark matter direct detection experiments.Comment: v1: 19 pages, 5 figures; v2: References added; v3: version to appear in JHE

    Relations among neutrino observables in the light of a large theta_13 angle

    Full text link
    The recent T2K and MINOS indications for a "large" theta_13 neutrino mixing angle can be accommodated in principle by an infinite number of Yukawa flavour structures in the seesaw model. Without considering any explicit flavour symmetry, there is an instructive exercise one can do: to determine the simplest flavour structures which can account for the data with a minimum number of parameters, simply assuming these parameters to be uncorrelated. This approach points towards a limited number of simple structures which show the minimum complexity a neutrino mass model must generally involve to account for the data. These basic structures essentially lead to only 4 relations between the neutrino observables. We emphasize that 2 of these relations, |sin theta_13|=(tan theta_23/cos delta)*(1-tan theta_12)/(1+tan theta_12) and |sin theta_13| = sin theta_12 R^1/4, with R= Delta m^2_21/Delta m^2_32, have several distinctive properties. First, they hold not only with a minimum number of parameters, but also for complete classes of more general models. Second, any value of theta_13 within the T2K and MINOS ranges can be obtained from these relations by taking into account small perturbations. Third, they turn out to be the pivot relations of models with approximate conservation of lepton number, which allow the seesaw interactions to induce observable flavour violating processes, such as mu -> e gamma and tau -> mu gamma. Finally, in specific cases of this kind, these structures have the rather unique property to allow a full reconstruction of the seesaw Lagrangian from low energy data.Comment: 13 pages, 3 figure

    Heavy colored resonances in top-antitop + jet at the LHC

    Full text link
    The LHC is the perfect environment for the study of new physics in the top quark sector. We study the possibility of detecting signals of heavy color-octet vector resonances, through the charge asymmetry, in top-antitop+jet events. Besides contributions with the top-antitop pair in a color-singlet state, the asymmetry gets also contributions which are proportional to the color factor f_{abc}^2. This process is particularly interesting for extra-dimensional models, where the inclusive charge asymmetry generated by Kaluza-Klein excitations of the gluon vanishes at the tree level. We find that the statistical significance for the measurement of such an asymmetry is sizable for different values of the coupling constants and already at low energies

    LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry

    Get PDF
    We examine the implications of the recent CDF measurement of the top-quark forward-backward asymmetry, focusing on a scenario with a new color octet vector boson at 1-3 TeV. We study several models, as well as a general effective field theory, and determine the parameter space which provides the best simultaneous fit to the CDF asymmetry, the Tevatron top pair production cross section, and the exclusion regions from LHC dijet resonance and contact interaction searches. Flavor constraints on these models are more subtle and less severe than the literature indicates. We find a large region of allowed parameter space at high axigluon mass and a smaller region at low mass; we match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like fermion. Our scenario produces discoverable effects at the LHC with only 1-2 inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a Tevatron measurement of the b-quark forward-backward asymmetry would be very helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table

    Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries

    Full text link
    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G_max = U(1)_(B-L) x U(1)_(L_e-L_mu) x U(1)_(L_mu-L_tau). While simple U(1) subgroups of G_max have already been discussed in the context of approximate flavor symmetries, we show how two-zero textures in the right-handed neutrino Majorana mass matrix can be enforced by the flavor symmetry, which is spontaneously broken very economically by singlet scalars. These zeros lead to two vanishing minors in the low-energy neutrino mass matrix after the seesaw mechanism. This study may provide a new testing ground for a zero-texture approach: the different classes of two-zero textures with almost identical neutrino oscillation phenomenology can in principle be distinguished by their different Z' interactions at colliders.Comment: 12 pages; Extended and clarified discussion; comments on finetuning in the textures; matches published versio
    corecore